

NTE7237 Integrated Circuit 3-Terminal Adjustable Current Source TO-92 Type Package

Description:

The NTE7237 is a 3–terminal adjustable current source in a TO–92 type package featuring 10,000:1 range in operating current, excellent current regulation and a wide dynamic voltage range of 1V to 40V. Current is established with one external resistor and no other parts are required. Initial current accuracy is ±3%. This device is a true floating current source with no separate power supply connections. In addition, reverse applied voltages of up to 20V will draw only a few dozen microamperes of current, allowing the device to act as both a rectifier and current source in AC applications.

The sense voltage used to establish operating current in the NTE7237 is 64mV at $+25^{\circ}$ C and is directly proportional to absolute temperature (°K). The simplest one external resistor connection, then, generates a current with $\approx +0.33\%$ /°C temperature dependence. Zero drift operation can be obtained by adding one extra resistor and a diode.

Applications for the current sources include bias networks, surge protection, low power reference, ramp generation, LED driver, and temperature sensing.

The NTE7237 is guaranteed over a temperature range of 0° to +70°C.

Features:

- Operates From 1V to 40V
- 0.02%/V Current Regulation
- Programmable from 1μA to 10mA
- True 2–Terminal Operation
- ±3% Initial Accuracy

Absolute Maximum Ratings:

V+ to V- Forward Voltage
V+ to V- Reverse Voltage
R Pin to V– Voltage
Set Current 10mA
Power Dissipation
ESD Susceptibility (Note 1)
Operating Temperature Range (Note 2), T _{opr} 0° to +70°C
Thermal Resistance, Junction-to-Ambient, R _{thJA}
0.4" Leads
0.125" Leads
Lead Temperature (During Soldering, 10sec), T _L +260°C

- Note 1. Human body model, 100pF discharge through a $1.5k\Omega$ resistor.
- Note 2. For elevated temperature operation, T_Jmax is +100°C.

Electrical Characteristics: (Note 3)

Parameter	Test Conditions		Min	Тур	Max	Unit
Set Current Error	V+ = 2.5V, Note 4	10μA ≤ I _{SET} ≤ 1mA	-	_	6	%
		1mA ≤ I _{SET} ≤ 5mA	-	_	8	%
		2μA ≤ I _{SET} ≤ 10μA	-	_	12	%
Ratio of Set Current to Bias Current	100μA ≤ I _{SET} ≤ 1mA		14	18	26	
	1mA ≤ I _{SET} ≤ 5mA		-	14	-	
	2μA ≤ I _{SET} ≤ 100μA		-	18	26	
Minimum Operating Voltage	2μA ≤ I _{SET} ≤ 100μA		-	0.8	-	V
	100μA ≤ I _{SET} ≤ 1mA		_	0.9	_	V
	$1\text{mA} \le I_{\text{SET}} \le 5\text{mA}$		_	1.0	_	V
Average Change in Set Current with Input Voltage	2μA ≤ I _{SET} ≤ 1mA	1.5V ≤ V+ ≤ 5V	_	0.02	0.1	%/V
		5V ≤ V+ ≤ 40V	-	0.01	0.05	%/V
	1mA ≤ I _{SET} ≤ 5mA	1.5V ≤ V+ ≤ 5V	-	0.03	-	%/V
		5V ≤ V+ ≤ 40V	-	0.02	_	%/V
Temperature Dependence of Set Current	25μA ≤ I _{SET} ≤ 1mA, Note 5		0.96T	Т	1.04T	
Effective Shunt Capacitance			-	15	-	pF

- Note 3. Unless otherwise specified, tests are performed at $T_J = +25$ °C with pulse testing so that junction temperature does not change during test.
- Note 4. Set current is the current flowing into the V+ pin. For the Basic 2–Terminal Current Source circuit, I_{SET} is determined by the following formula: $I_{SET} = 67.7 \text{mV/R}_{SET}$ (@ +25°C). Set current error is expressed as a percent deviation from this amount. I_{SET} increases at 0.336%/C at $I_{J} = +25$ °C (227 μ V/°C)
- Note 5. I_{SET} is directly proportional to absolute temperature (°K). I_{SET} at any temperature can be calculated from: $I_{SET} = I_o(T/T_o)$ where I_o is I_{SET} measured at T_o (°K).

