



# NTE7225 Integrated Circuit Precision Temperature Sensor

#### **Description:**

The NTE7225 is a precision temperature sensor in a TO92 type package which can be easily calibrated. This device operates as a 2–Lead Zener and the breakdown voltage is directly proportional to the absolute temperature at  $10\text{mV}/^\circ\text{K}$ . The circuit has a dynamic impedance of less than  $1\Omega$  and operates within a range of current from  $450\mu\text{A}$  to 5mA without alteration of its characteristics. Calibrated at  $+25^\circ\text{C}$ , the NTE7225 has a typical error of less than  $1^\circ\text{C}$  over a  $100^\circ\text{C}$  temperature range. Unlike other sensors, the NTE7225 has a linear ouput.

#### Features:

- Directly Calibrated in °K
- 1°C Initial Accuracy
- Operates From 450μA to 5mA
- Less Than 1Ω Dynamic Impedance

### **Absolute Maximum Ratings:**

| Nacciate maximum reatinger                          |    |
|-----------------------------------------------------|----|
| Forward Current, I <sub>F</sub>                     | ıΑ |
| Reverse Current, I <sub>R</sub>                     | ıΑ |
| Operating Free-Air Temperature Range (Note 1), Topr |    |
| Continuous –40° to +100°                            | Ò. |
| Intermittent                                        | .C |
| Storage temperature Range, T <sub>stg</sub>         | Ò. |
| Note 1. $T_J \le +150^{\circ}C$ .                   |    |

#### **Temperature Accuracy:**

| Parameter                                 | Test Conditions                                                |                               | Min  | Тур  | Max  | Unit |
|-------------------------------------------|----------------------------------------------------------------|-------------------------------|------|------|------|------|
| Operating Output Voltage                  | $T_C = +25$ °C, $I_R = 1$ mA                                   |                               | 2.92 | 2.98 | 3.04 | V    |
| Uncalibrated Temperature Error            | I <sub>R</sub> = 1mA                                           | T <sub>C</sub> = +25°C        | _    | 2    | 6    | °C   |
|                                           |                                                                | $T_{min} \le T_C \le T_{max}$ | _    | 4    | 9    | °C   |
| Temperature Error with +25°C Calibration  | $I_R = 1 \text{mA}, T_{\text{min}} \le T_C \le T_{\text{max}}$ |                               | -    | 1    | 2    | °C   |
| Calibration Error at Extended Temperature | T <sub>C</sub> = T <sub>max</sub> (intermittent)               |                               | -    | 2    | _    | °C   |
| Non-Linearity                             | I <sub>R</sub> = 1mA                                           |                               | _    | 0.3  | 1.5  | °C   |

## **Electrical Characteristics:** (Note 2)

| Parameter                                    | Test Conditions                                                 |   | Тур | Max | Unit  |
|----------------------------------------------|-----------------------------------------------------------------|---|-----|-----|-------|
| Operating Output Voltage Change With Current | $450\mu\text{A} \le I_R \le 5\text{mA}$ at Constant Temperature | - | 3   | 14  | mV    |
| Dynamic Impedance                            | I <sub>R</sub> = 1mA                                            | _ | 0.6 | _   | Ω     |
| Output Voltage Temperature Drift             |                                                                 | _ | +10 | _   | mV/°C |
| Time Constant                                | Still Air                                                       | _ | 80  | _   | s     |
|                                              | Air 0.5m/s                                                      | _ | 10  | _   | s     |
|                                              | Stirred Oil                                                     | - | 1   | _   | s     |
| Time Stability                               | T <sub>C</sub> = +25°C                                          | _ | 0.2 | _   | °C/kh |

Note 2. Accuracy measurements are made in a well-stirred oil bath. For other conditions, self heating must be considered.

