Inductive Proximity Switches

Type Number	Diameter (mm)	Output Functions			Style		$\dot{\square}$	(1)	Page No.
		DC Types		AC Types					
		PNP	NPN		Shielded	Unshielded			
PRX 800	8				-	-	-		134
PRX 801	8	-				-	-		134
PRX 802	8	\bullet			\bullet		\bullet		134
PRX 803	8	\bullet				\bullet	-		134
PRX 830	8		-		-		-		134
PRX 831	8		-			-	\bullet		134
PRX 832	8		\bullet		\bullet		-		134
PRX 833	8		-			-	-		134
PRX 1200	12	\bullet			\bullet		\bullet		135
PRX 1201	12	-				-	-		135
PRX 1202	12	\bullet			-		\bullet		135
PRX 1203	12	\bullet				\bullet	\bullet		135
PRX 1220	12	\bullet			\bullet		-		135
PRX 1230	12		-		-		-		135
PRX 1231	12		-			\bullet	-		135
PRX 1232	12		\bullet		-		\bullet		135
PRX 1233	12		\bullet			-	-		135
PRX 1260	12			\bullet	\bullet		\bullet	\bullet	135
PRX 1261	12			\bullet		\bullet	-	-	135
PRX 1800	18	-			-		-		136
PRX 1801	18	\bullet				\bullet	\bullet		136
PRX 1802	18	\bullet			-		\bullet		136
PRX 1803	18	-				\bullet	-		136
PRX 1820	18	\bullet			\bullet		\bullet		136
PRX 1830	18		-		\bullet		\bullet		136
PRX 1831	18		\bullet			\bullet	\bullet		136
PRX 1832	18		-		-		-		136
PRX 1833	18		\bullet			\bullet	\bullet		136
PRX 1860	18			-	-		-	\bullet	136
PRX 1861	18			\bullet		-	-	-	136
PRX 1862	18			\bullet	-		\bullet	\bullet	136
PRX 1863	18			-		-	-	-	136
PRX 3000	30	-			-		-		138
PRX 3001	30	\bullet				\bullet	\bullet		138
PRX 3002	30	-			-		-		138
PRX 3003	30	\bullet				\bullet	\bullet		138
PRX 3030	30		-		\bullet		\bullet		138
PRX 3062	30			\bullet	-		-	\bullet	138
PRX 3063 DISC.	30			-		-	-	-	138
PRX 3064	30			-	-		-	-	138
PRX 3065	30			\bullet		-	\bullet	-	138

Inductive Proximity Switches

EC G Inductive Proximity Switches are precision, solid-state sensing devices that provide an attractive alternative to physically activated limit and control switches with their mechanical contacts, moving parts and attendant wear characteristics. ECG Proximity Switches are fully sealed against most hostile industrial environments. They are impervious to oils, organic cleaners, steam, water and dust as well as being immune to vibration. Usual positioning and operational constraints are virtually eliminated, while life span remains unaffected by problems related to mechanical wear.
Proximity switches will operate electromechanical devices such as relays, contactors, solenoids, counters and valves without additional interface components. Also, DC types provide an output compatible with solid state loads, including programmable controllers. Proximity switches offer reliable and long-lived operation in applications as diverse as machine tools, conveyors, automated warehouses, wood working machines, robotics, farm machinery, packaging equipment, production lines and general automation. Philips ECG offers a broad range of types to meet the variety of users' needs.

Operating Principle

An inductive proximity switch has three functional sections or stages, as shown in Figure 1. They are: a radio frequency (RF) oscillator circuit that incorporates a coil with a ferrite core, a Schmidt trigger circuit, and a solid state output switching device (transistor in DC types, thyristor in AC types).

The oscillator circuit generates an electromagnetic field which is radiated from the active face of the switch. A metal object (target) introduced into this sensing field absorbs energy from the oscillator which, in turn, reduces the amplitude of oscillation. The trigger circuit detects the reduction and in response produces a signal that closes the output stage switching device. W hen the target leaves the sensing field the oscillator regenerates and the switch resets.
ECG Inductive Proximity Switches are responsive to all electrically conductive materials. They cannot, however, distinguish between different materials.

Sensing Characteristics

The target can approach the switch in either of two ways, as illustrated in Figure 2. In the Axial plane the target approaches "head-on" along the major axis of the switch, perpendicular to the active face. In the Radial plane the target approaches and/or "slides by" the switch along a path parallel to the active face.

In practice, the target should not come in contact with the switch. A minimum separation between the target and active face is prerequisite and should be assured at all times to prevent mechanical wear.

Sensing Distance ($\mathbf{S}_{\mathbf{n}}$)

This is the distance at which a metallic target approaching the active face in the Axial plane ("head-on") activates the switch, Figure 3.

Sensing Distance is affected by target size, shape and composition. Therefore, catalog values are given for a Standard Target. This is a square of mild steel (low carbon) 1.0 mm thick with side measurements equal to the diameter of the switch or three times the sensing distance, whichever is greater.
Targets which are smaller than the Standard Target, not flat or made of non-ferrous metal will reduce the Sensing Distance. It should be noted that if the target is larger than the Standard Target the Sensing Distance will not be increased.
Correction Factors - Non-Ferrous Metals: EC G proximity switches will detect all metals, but have a greater sensitivity to ferrous metals. If non-ferrous metals are to be detected, a shorter Sensing Distance must be used.Listed below are approximate correction factors for certain non-ferrous metals.

Material	Factor
Chrom-N ickel	$0.9 \times$ Sensing Distance
Brass	$0.5 \times$ Sensing Distance
Aluminum	$0.4 \times$ Sensing Distance
Copper	$0.4 \times$ Sensing Distance

Sensing Distance vs. Switch Size: Sensing Distance is also directly related to switch diameter. The greater the diameter, the greater the Sensing Distance. Philips ECG offers a broad range of switch diameters to provide just the Sensing Distance required:

Switch Diameter	$\underset{\text { in }}{\text { Sensing Distance }} \mathbf{(S n)}$	
in mm	Shielded	Unshielded
8 (Series 800)	1.5	2.5
12 (Series 1200)	2.0	4.0
18 (Series 1800)	5.0	8.0
30 (Series 3000)	10.0	15.0

Axial and Radial Sensing Characteristics

Sensing characteristics in the Axial (head-on) and Radial (slide-by) actuation modes are illustrated in Figure 4.
Axial Mode: In this mode or plane note that there is a difference in the distance at which the switch activates (closes) as the target approaches and the distance at which the switch deactivates (opens) as the target recedes. This characteristic is referred to as Switching Hysteresis and is typically 15 percent of the Sensing D istance $\left(S_{n}\right)$. Hysteresis provides compensation for target vibration and minor surface irregularities that might otherwise cause false signals.
Radial Mode: In this mode, the distance betw een the active face of the switch and the target should not exceed 81 per-cent of the specified Sensing, Distance $\left(S_{n}\right)$ of the particular switch. O peration within this zone is assured and is independent of variations, within ratings, of temperature and voItage.

Switching Frequency

Switching Frequency represents the maximum number of targets per second that a proximity switch is capable of detecting. As shown in Figure 5, it is specified for the Radial actuation mode (slide-by) at a sensing distance of $0.5 \mathrm{~S}_{\mathrm{n}}$ with a Standard Target and a pulse-to-pause ratio of 1:2.

Shielded and Unshielded Styles

ECG proximity switches are available in two styles: Shielded and Unshielded. The distinguishing characteristics are illustrated in Figure 6.
Shielded (Flush Mounting): This style of switch has the active face essentially even with the threaded end of the switch housing, Figure 6A. The shielded design can be flush mounted in metal with no change in performance characteristics.
Unshielded (Non-Flush Mounting): As shown in Figure 613, the active face of the unshielded switch extends well beyond the threaded end of the housing, thus exposing a larger area from which the electromagnetic sensing field can radiate. This style is somewhat side sensitive and, consequently, can not be flush mounted in metal. A metal-free zone about the sensing face is required as described in the Section Mounting and Installation.

Switch Configurations

AC Types

AC proximity switches are 2-ter minal, normally open devices which are powered by line voltage. No secondary (external) power source is needed. This feature permits them to be directly substituted for electromechanical limit switches without
additional wiring. They can operate relays, solenoids, contactors, etc., at switching rates up to 15 operations per second, depending on the switch type.
Both shielded and unshielded styles are offered by Philips ECG in 12,18 and 30 mm sizes with sensing distance of 2 to 15 mm , and operating voltage ranges of 35 to 250 VAC and 90 to 250 VAC. Maximum load current of all types is 250 mA .

AC switches are available both with and without

Ground, Figure 7. O peration is identical. W hen not sensing a target, the output is open (non-conductive). W hen a metal target enters the sensing field the output closes (becomes conductive) and energizes the load.

W hen the switch is open, a small leakage current (1.5 mA max .) flows through the load. W hen closed, there is a voltage drop across the output of up to 8.5 volts. These characteristics must be taken into consideration, especially when several proximity switches are to be connected in series or parallel (see section entitled Series and Parallel Operation). O peration in combination with switches that have mechanical contacts is also feasible.
AC proximity switches are not protected against voltage or current overload. Accidental short circuit of the load in the closed (conductive) state will destroy the switch. Also, power should never be applied to the switch in the absence of a load. Protection is provided against RFI (radio frequency interference).

DC Types

DC proximity switches offer the advantages of high switching frequency (up to 1000 Hz in the 8 mm size), low voltage drop and minimal leakage current. In addition, their output is compatible with solid state loads, including programmable controllers. They can also be used to directly drive electro-mechanical devices, such as relays, counters, etc. O peration in combination with mechanical contacts is also practical. DC proximity switches do require a separate power supply; however, regulation is not generally necessary.
Both shielded and unshielded switch styles are supplied by Philips ECG in $8,12,18$ and 30 mm sizes with sensing distances of 1.5 to 15 mm , an operating voltage range of 10-30 VDC and a maximum load current capability of 200 mA .
Switching configurations include PN P N ormal O pen, N PN N ormal O pen, and PN P Complementary.
PNP Normal Open (Current Sourcing) - Figure 8: The load is tied to the Negative (common) side of the power supply. The output transistor switches the positive side of the supply to the load. The PN P output function is also known as Current Sourcing since the current for the load is "sourced" by the proximity switch.

PNP Normal Open (Current Sourcing)

Fig. 8

ECG ${ }^{\circledR}$ Relays and Accessories

NPN Normal Open (Current Sinking) - Figure 9: The load is tied to the Positive side of the power supply. The output transistor switches the negative (common) supply line to the load. The N PN output function is also known as Current Sinking since the current passes through the load first and "sinks" through the switch.
W hen not sensing a target, the output of both PN P and N PN models is open (non-conductive). It closes (becomes conductive) when a target is sensed.

NPN Normal Open (Current Sinking)

Fig. 9

Complementary Normal Open/Normal Closed - Figure 10:
DC proximity switches of the complementary type have two outputs: one normally open and another which is normally closed. The two outputs change state simultaneously when a target is detected. Both output transistors are PN P (current sourcing).

Complementary - PNP Normal Open/Normal Closed

Fig. 10

Most electromechanical loads (relays, counters, etc.) will accommodate either PN P or N PN types, providing they are correctly wired. The proper output function must be chosen for solid state loads and programmable controllers. For series and parallel operation, and application in combination with mechanical contacts, see section entitled Series and Parallel Operation.
Power Supply: Regulation of supply voltage is not required providing rated switch 0 perating Voltage is maintained within the limits specified. Supply Voltage Ripple must not exceed 15% of the O perating Voltage.
Protective Features: DC proximity switches are protected against accidental polarity reversal, as well as short circuit of the load. They are also immune to RFI (radio frequency interference).

Series and Parallel Operation

Series Connection

AC Switches: Series operation of AC proximity switches is shown in Figure I1. Care must be taken to assure that there is sufficient voltage to the load for it to operate properly. In the closed (conductive) state there is a drop in voltage (loss) across each switch of $8-9$ volts at maximum rated current. As the number of switches in series is increased, the loss becomes appreciable and can be enough to prevent the load from operating as it should. It is recommended that no more than four switches be wired in series at 240 VAC and no more than two switches at 120VAC. Series operation below 90 VAC is not

Fig. 11

recommended. A combination of mechanical contact switches and proximity switches is possible.
DC Switches Series connection of DC proximity switches is shown in Figures 12 and 13 for normally open types with PN P (sourcing) and N PN (sinking) output functions.
A voltage drop of up to 2.5 volts occurs with each switch connected in series. Therefore, the voltage available to the load will be reduced by this amount by each switch in the string. Each proximity switch must be capable of supplying the deactivated ("standby") current of the other switches, as well as the external load current. Proximity switches can be applied in combination with mechanical contact switches.

NPN DC Switches - Series Connection

Parallel Connection

AC Switches: Parallel connection of AC proximity switches is illustrated in Figure 14. The number of switches that can be paralleled is a function of switch leakage current (up to 1.5 mA max. each) and the load impedance. The sum of the leakage currents must be less than the dropout current of the load. It must be noted that when any of the switches connected in parallel is closed, the remaining switches will then function in an "exclusive OR" mode. That is, if another switch senses that it should close after the first one does, the second switch will be prevented from doing so until 100 mS after the first switch opens.
W hen connecting AC proximity switches in parallel with mechanical contacts, potentially damaging transient voltage spikes may be produced when interrupting inductive loads, e.g., contactors, relays, solenoids. To prevent damage to the switch from these voltage spikes, surge suppressors should be used at the source of the spikes.

ECG ${ }^{\circledR}$ Relays and Accessories

Fig. 14
AC Switches - Parallel Connection

DC Switches: Proximity switches can be operated in parallel to give an "O R" function. Circuits are shown in Figures 15 and 16 for normally open switches with PN P (sourcing) and N PN (sinking) output functions.
The isolation diodes shown are essential with proximity switches that have built-in LED status indicators. O therwise, all the LED s will light when one switch closes. Also, without the diodes, each switch must be capable of supplying the deactivated current ("standby current") of all the switches, as well as the current required by the external load.
W hen connecting DC proximity switches in parallel with mechanical contacts, potentially damaging transient voltage spikes may be produced when interrupting inductive loads. To protect against damage from these voltage spikes and possible false operation, surge suppressors should be used at the source of the spikes.

PNP DC Switches - Parallel Connection

Fig. 15

NPN DC Switches - Parallel Connection

Fig. 16

Mounting and Installation

Shielded and Unshielded

Shielded (Flush Mounting): Shielded proximity switches can be embedded in metal up to the plane of its active face (flush mounted) without operational limitations, Figure 17A.
Unshielded (Non-Flush Mounting): The unshielded style of proximity switch requires a metal-free zone around the active face, as illustrated in Figure 17B. This area must be kept free of conductive metals or other materials that possess magnetic properties. The depth should measure no less than the diameter of the switch housing. The diameter of the metal- free zone should be at least three times that of the switch housing.

Side-By-Side

Proximity switches can be mounted side-by-side, Figure 18. However, they must be spaced far enough apart to prevent the electromagnetic sensing field radiated by one switch from affecting operation of the other switch. Shielded switches should be spaced on centers a minimum distance of twice the diameter of the switch housing, Figure 18A. Unshielded switches should be spaced a minimum of three times the diameter of the switch housing, Figure 18B.

Face-To-Face

Proximity switches can also be mounted facing one another, Figure 19. W hen so positioned, a minimum distance of six times the rated sensing distance $\left(S_{n}\right)$ must separate their active faces to preclude possible interaction between the switches.

Facing Metal

Mounting directly opposite a metal surface is another viable option, Figure 20. As shown, the distance between the active face of the proximity switch and the opposing metal surface should be a minimum of three times the rated sensing distance $\left(S_{n}\right)$ of the particular switch.

Installation - Torquing

It is recommended that ECG proximity switches be clamped in position using two nuts (and lock washers when specified), one on each side of the mounting surface. If these nuts are overtightened, it is possible to damage the switch housing. Therefore, care should be taken not to exceed the torque values given in the following table:

Switch Diameter

8 mm (Series 800)
Connector Types C able Types
12 mm (Series 1200)
DC Types
AC Types
18 mm (Series 1800)
30mm (Series 3000)

Maximum Torque
8 ft . lbs.
4 ft. lbs.
15 ft . Ibs.
8 ft . lbs.
35 ft . lbs.
44 ft . lbs.

Brackets and Adapters

To simplify installation, universal mounting brackets and microswitch adapter brackets are available in most switch sizes. See Accessories section, Page 165.
CAUTION: Especially high transient voltages can be introduced by cables which carry high currents for motors, solenoids, clutches, etc. These could cause damage to the proximity switch or activate its short circuit protection. This can be minimized by separating switch wiring from such cables.

Terms and Definitions

Active Face: The surface of the proximity switch from which the sensing field is radiated. Also known as "sensing surface".
Complementary Output: A DC operated proximity switch with both N ormally O pen (N.O.) and N ormally Closed (N.C.) outputs that change state simultaneously when a target is detected.
Current Consumption - Activated: Current drawn by a DC proximity switch with no load when its output is CLO SED (conductive state). Value given is at maximum rated 0 perating Voltage. Also known as "damped" current consumption and "standby" current.
Current Consumption - Deactivated: Current drawn by a DC proximity switch with no load when its output is OPEN (non-
conductive state). Value given is at maximum rated O perating Voltage. Also known as "undamped" current consumption.
Eddy Currents: Small circulating currents induced in the surface of a metallic target by the sensing field (flux) from an inductive proximity switch.
Excitation Delay: The length of time required for a proximity switch to become operational upon the application of power.
Inrush Current: The maximum Load Current that an AC proximity switch can withstand for a short duration $(20 \mathrm{mS})$ when the switch is CLO SED (conductive state).
Leakage Current: The amount of current that flows through an AC proximity switch when it is O PEN (non-conductive state).
Load Current - Maximum: The highest value of current at which AC and DC proximity switches can be continuously operated. Exceeding this rating may cause permanent damage to the switch.
Load Current - Minimum: The amount of current that the load of an AC proximity switch must draw when CLO SED (conductive state) in order for the switch to operate properly, i.e., reset when deactivated.
N/C: N o connection.
N.C. (Normal Closed): A proximity switch with a normally closed output that 0 PEN S (becomes non-conductive) when a target is detected. Also known as a "break" switching configuration or function.
N.O. (Normal Open): A proximity switch with a normally open output that CLO SES (becomes conductive) when a target is detected. Also known as a "make" switching configuration or function.
NPN (Current Sinking): A negative switching output in which the load current passes through the load first, then "sinks" through the proximity switch.
Operating Temperature: The range in ambient temperature over which the proximity switch can be operated. O peration outside the given limits will result in instability and possible permanent damage to the switch.
Operating Voltage: The range of voltage that can be used to operate a proximity switch. Also called "supply" voltage.
Output Resistance: Value of resistance internal to a DC proximity switch that appears in parallel with the external load resistance. W hen the output stage of the switch is 0 PEN (non-conductive) it is the resistance "seen" by the load.
Parallel Capacitance to Load: Maximum permissible value of capacitance in parallel with the load of a DC proximity switch.
PNP (Current Sourcing): A positive switching transistor output in which the current for the load "sources" through the proximity switch.
Repeatability: A bility of a proximity switch to repeatedly detect a target at the same distance from the Active Face. Expressed as a percentage of Sensing Distance $\left(\mathrm{S}_{\mathrm{n}}\right)$.
Sensing Distance ($\mathbf{S}_{\mathbf{n}}$): The nominal distance ($\pm 10 \%$) at which a proximity switch will detect a target approaching in a plane perpendicular to the Active Face. Specified at an O perating Temperature of $25^{\circ} \mathrm{C}$ with a Standard Target. Also known as "operating point".
Shielded: A style of proximity switch that has its Active Face even with the end of the switch housing and can be flush mounted in metal.
Standard Target: A reference used for calibration and initial setup. C onsists of a square of low-carbon steel 1.0 mm thick with side measurements equal to the diameter of the switch or three times the specified Sensing D istance $\left(S_{n}\right)$, whichever is greater.
Supply Voltage Ripple: The maximum permissible peak-to-peak AC voltage component superimposed on the average value of DC voltage, expressed in percent.
Switching Frequency: The maximum number of targets (objects) per second that the proximity switch is capable of detecting. C atalog value is based on a Standard Target at a distance of $0.5 \mathrm{~S}_{\mathrm{n}}$ and a pulse-to-pause ratio of 1:2.
Switching Hysteresis: The difference between switching points of an approaching and a receding target in the axial plane. Expressed as a percentage of the specified Sensing Distance $\left(S_{n}\right)$. Also called "differential".
Unshielded: A style of proximity switch that has its active face extended beyond the end of the switch housing. Unshielded switches are somewhat side-sensitive and cannot be flush mounted in metal.

Voltage Drop: The voltage "lost" across the output stage of a proximity switch when the switch is CLO SED (conductive state). C atalog value is at maximum rated O perating Voltage and Load Current.

8 mm Diameter Inductive Proximity Switches

- Short Circuit Protected - Reverse Polarity Protected - LED Indicator
- Metal Housing
- Shielded \&

Unshielded - Micro Connector /Cable Types - RFI Protected

Ratings and Specifications

$\begin{aligned} & \text { ECG } \\ & \text { Type } \end{aligned}$	Output Function			Style			Sensing Distance S_{n} (mm)	Operating Voltage (V)	Switching Freq. Max. (Hz)	Body Length (mm)	Fig. No.	Wiring Diag.
	DC Types											
	PNP (Source)	NPN (Sink)	AC Types	Flush Mounting	Non-Flush Mounting	Termination						
PRX*800	N 0 .			\square		Cable	1.5	10-30 DC	1000	45	P3	A
PRX 801	N. 0 .				\square	Cable	2.5	$10-30 \mathrm{DC}$	1000	45	P4	A
PRX 802	N. 0 .			\square		Connector	1.5	10-30 DC	1000	70	P1	A
PRX 803	N. 0 .				\square	Connector	2.5	$10-30 \mathrm{DC}$	1000	72.5	P2	A
PRX 830		N . 0 .		\square		C able	1.5	10-30 DC	1000	45	P3	D
PRX 831		N. 0 .			\square	Cable	2.5	$10-30 \mathrm{DC}$	1000	45	P4	D
PRX 832		N. 0 .		\square		Connector	1.5	10-30 DC	1000	70	P1	D
PRX 833		N. 0 .			\square	Connector	2.5	10-30 DC	1000	72.5	P2	D

* PRX is a trademark of N orth American Philips Corporation
DC Types (PNP \& NPN)
Load Current 1 . \qquad .. 200 mA Max.

Current Consumption

Activated ... 25 mA Max.
D eactivated.. 12 mA Max.
Voltage Drop.......................................2.5 V Max.
Supply Voltage Ripple..........................15\% Max.
Output Resistance........ $2.2 \mathrm{~K} \Omega$ + Diode \& LED
Parallel Cap. to Load.. $0.5 \mu \mathrm{~F}$ Max. @ 24 VDC

General

 Nut Tightening Torque
 C able Types
 \qquad
 4 Ft. Lbs. Max.
 Connector Types. 8 Ft. Lbs. Max.
 NEMA Ry

Δ Rated At Max 0 perating Voltage and Temperature.

Accessories

Part No.	Description
PRX 9000	DC Connector/C able, Straight
PRX9001	DC C onnector/C able, Rt Angle
PRX 9108	Mounting Bracket

Diag. A - PNP Normally Open

Diag. D - NPN Normally Open

Fig. P1

Fig. P3

Fig. P2

Fig. P4

Pinout - Connector Terminated Types

Series PRX1200

12 mm Diameter Inductive Proximity Switches

\author{

- Metal Housing
 - Shielded \&
 Unshielded
 - Micro Connector /Cable Types - RFI Protected
}
- Short Circuit

Protected (DC Types)

- Reverse Polarity

Protected

- LED Indicator

Ratings and Specifications

$\begin{aligned} & \text { ECG } \\ & \text { Type } \end{aligned}$	Output Function			Style		Termination	Sensing Distance S_{n} (mm)	Operating Voltage (V)	Switching Freq. Max. (Hz)	Body Length (mm)	Fig. No.	Wiring Diag.
	DC Types		AC Types	Shielded Flush Mounting	Unshielded Non-Flush Mounting							
	PNP (Source)	NPN (Sink)										
PRX*1200	N . 0 .			\square		C able	2	10-30 DC	800	60	P22	A
PRX 1201	N. 0 .				\square	Cable	4	10-30 DC	400	60	P25	A
PRX 1202	N. 0 .			\square		Connector	2	10-30 DC	800	70	P20	A
PRX 1203	N. 0 .				\square	Connector	4	10-30 DC	400	70	P21	A
PRX 1220	Compl. \dagger			\square		C able	2	10-30 DC	800	60	P22	C
PRX 1230		N. 0		\square		C able	2	10-30 DC	800	60	P22	D
PRX 1231		N.O.			\square	C able	4	10-30 DC	400	60	P25	D
PRX 1232		N.O.		■		Connector	2	10-30 DC	800	70	P20	D
PRX 1233		N. 0 .			\square	Connector	4	10-30 DC	400	70	P21	D
PRX 1260			N 0.	\square		C able	2	35-250 AC	10	60	P22	G
PRX 1261			N. 0 .		\square	C able	4	35-250 AC	10	60	P25	G

* PRX is a trademark of N orth American Philips Corporation

Accessories

Part No.	Description
PRX 9000	DC C onnector/C able, Straight
PRX 9001	DC C onnector/C able, Rt A ngle
PRX 9112	Mounting Bracket
PRX 9212	Microswitch Adapter

Diag. A - PNP Normally Open

Diag. D - NPN Normally Open

Fig. P20

Fig. P22

Diag. C - PNP Complementary

Diag. G - AC Normally Open

Fig. P21

Fig. P25

Series PRX1800

18 mm Diameter Inductive Proximity Switches

\author{

- Metal Housing
 - Shielded \&
 Unshielded
 - Micro Connector
 /Cable Types
 - RFI Protected
}
- Short Circuit Protected (DC Types)
- Reverse Polarity

Protected

- LED Indicator

Ratings and Specifications

ECG Type	Output Function			Style		Termination	Sensing Distance $\underset{(\mathbf{m m})}{\mathrm{S}_{\mathbf{n}}}$	Operating Voltage (V)	Switching Freq. Max. (Hz)	Body Length (mm)	Fig. No.	Wiring Diag.
	DC Types		AC Types	Shielded Flush Mounting	Unshielded Non-Flush Mounting							
	PNP (Source)	NPN (Sink)										
PRX*1800	N . 0 .			\square		Cable	5	10-30 DC	500	76	P40	A
PRX 1801	N. 0 .				\square	Cable	8	10-30 DC	200	76	P41	A
PRX 1802	N. 0 .			\square		Connector	5	10-30 DC	500	83	P44	A
PRX 1803	N. 0 .				\square	Connector	8	10-30 DC	200	83	P45	A
PRX 1820	Compl. \dagger			\square		C able	5	10-30 DC	500	76	P40	C
PRX 1830		N. 0.		\square		Cable	5	10-30 DC	500	76	P40	D
PRX 1831		N. 0 .			\square	Cable	8	10-30 DC	200	76	P41	D
PRX 1832		N. 0 .		\square		Connector	5	$10-30 \mathrm{DC}$	500	83	P44	D
PRX 1833		N. 0 .			\square	Connector	8	$10-30$ DC	200	83	P45	D
PRX 1860			N. 0 .	\square		Cable	5	35-250 AC	10	88	P40	G
PRX 1861			N. 0 .		\square	Cable	8	35-250 AC	10	88	P41	G
PRX 1862			N. 0 .	\square		Connector	5	35-250 AC	10	83	P44	H
PRX 1863			N. 0 .		\square	Connector	8	35-250 AC	10	83	P45	H

* PRX is a trademark of N orth American Philips Corporation
\dagger Complementary N.O. and N.C. O utputs

DC Types (PNP \& NPN)

Load Current A............................. 200 mA Max.
Current Consumption
Activated. \qquad ... 25 mA Max.
D eactivated .12 mA Max.
Voltage Drop. ..2.5 V Max.
Supply Voltage Ripple........................15\% Max.
Output Resistance...... $2.2 \mathrm{~K} \Omega$ + Diode \& LED
Parallel Cap. to Load.... $1 \mu \mathrm{~F}$ Max. @ 24 VDC

AC Types

Load Current A \qquad 5 Min. to 250 Max. mA Inrush Current. \qquad .. 2 A for 20 ms Max.
Voltage Drop.
Supply Voltage Frequency. 8.5 V Max.

Leakage Current $.45-65 \mathrm{~Hz}$
. 1.5 mA Max.

General

Operating Temp...................... $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Repeatability.
$5 \% \mathrm{Of} \mathrm{S}_{n}$
Switching Hysteresis. \qquad $15 \% 0$ f S_{n}
Housing. \qquad N ickel Plated Brass
D iameter .. 18 mm Thread ..M 18×1
Nut Tightening Torque........... 35 Ft . Lbs. Max.
Cable Length/Wire Size............ 3 M/22 AW G
NEMA Ratings. $4,4 \mathrm{X}, 6,11,12,13,18$
A Rated At Max O perating Voltage and Temperature.
N ote: Series PRX 1800 continued on next page

Diag. A - PNP Normally Open

Diag. D - NPN Normally Open

Diag. H - AC Normally Open

AC

Diag. C - PNP Complementary

Diag. G - AC Normally Open

Pinout - Connector Terminated Types

ECG ${ }^{\circledR}$ Relays and Accessories

Series PRX 1800 (cont'd)

Fig. P40

Fig. P44

Fig. $\mathbf{P 4 1}$

Fig. P45

Accessories

Part No.
PRX 9000
PRX 9001
PRX 9002
PRX 9003
PRX 9118
PRX 9218

Description

DC Connector/C able, Straight
DC Connector/C able, Rt Angle
AC C onnector/C able, Straight
AC Connector/C able, Rt Angle Mounting Bracket
Microswitch Adapter

Series PRX3000

30 mm Diameter Inductive Proximity Switches

\author{

- Metal Housing
 - Shielded \& Unshielded - Micro Connector /Cable Types - RFI Protected
}
- Short Circuit Protected (DC Types)
- Reverse Polarity Protected
- LED Indicator

Ratings and Specifications

ECG Type	Output Function			Style		Termination	Sensing Distance $\underset{(\mathbf{m m})}{\mathbf{S}_{\mathbf{n}}}$	Operating Voltage (V)	Switching Freq. Max. (Hz)	Body Length (mm)	Fig. No.	Wiring Diag.
	DC Types		AC Types	Shielded Flush Mounting	Unshielded Non-Flush Mounting							
	PNP (Source)	NPN (Sink)										
PRX*3000	N. 0 .			\square		C able	10	10-30 DC	300	76.5	P60	A
PRX 3001	N. 0 .				\square	C able	15	10-30 DC	100	76.5	P61	A
PRX 3002	N. 0 .			\square		Connector	10	10-30 DC	300	88	P62	A
PRX 3003	N O .				\square	Connector	15	10-30 DC	100	88	P63	A
PRX 3030		N 0.		\square		Cable	10	$10-30 \mathrm{DC}$	300	76.5	P60	D
PRX 3062			N. 0 .	\square		Connector	10	35-250 AC	10	83	P66	H
-PRX 3063			N. 0 .		\square	Connector	15	35-250 AC	10	83	P67	H
PRX 3064			N. 0 .	\square		C able	10	90-250 AC	15	55	P64	G
PRX 3065			N. 0 .		\square	C able	15	90-250 AC	15	55	P65	G

* PRX is a trademark of N orth American Philips Corporation
- Discontinued

DC Types (PNP \& NPN)
Load Current © 200 mA Max.
Current Consumption
Activated. \qquad .25 mA Max
D eactivated \qquad 12 mA Max.

Voltage Drop

 ..2.5 V Max.Supply Voltage Ripple........................15\% Max.
Output Resistance.......2.2 K $\Omega+$ Diode \& LED
Parallel Cap. to Load.... $1 \mu \mathrm{~F}$ Max. @ 24 VDC
AC Types
Load Current \qquad 5 Min. to 250 Max.mA Inrush Current..................... 2 A for 20 mS Max.
Voltage Drop \qquad 8.5 V Max.

Supply Voltage Frequency \qquad $45-65 \mathrm{~Hz}$
Leakage Current \qquad 1.5 mA Max.

Excitation Delay. \qquad .100 mS Max.

General

OperatingTemp....................... $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Repeatabilit ty........... \qquad $.5 \% 0 f S_{n}$
Switching Hysteresis........................... 15% of S_{n}
Housing..................................N ickel Plated Brass Diameter \qquad 30 mm
Thread M 30×1.5
Nut Tightening Torque...................... Lbs. Max.
Cable Length/Wire Size............ $3 \mathrm{M} / 22$ AW G
NEMA Ratings................ $4,4 \mathrm{X}, 6,11,12,13,18$

Diag. A - PNP Normally Open

Diag. G - AC Normally Open

AC

Diag. D - NPN Normally Open

Diag. H - AC Normally Open

DC

Pinout - Connector Terminated Types
© Rated At Max 0 perating Voltage and Temperature.
Accessories

Part No.	Description
PRX 9000	DC C onnector/C able, Straight
PRX 9001	DC Connector/C able, Rt A ngle
PRX 9002	AC Connector/C able, Straight
PRX9003	AC Connector/C able, Rt A ngle
PRX9130	Mounting Bracket

Fig. P60

Fig. P62

Fig. P64

Fig. P66

Fig. P61

Fig. P63

Fig. P65

Fig. P67

Inductive Proximity Switch Accessories Series PRX 9000

12mm Microconnectors with Integral Molded 5M Cable

ECG Type	Fig. Description	No.
PRX 9000	DC, 4-Pin Straight Connector/C able	PA1
PRX 9001	DC, 4-Pin Rt Angle C onnector/C able	PA2
PRX 9002	AC, 3-Pin Straight Connector/C able	PA3
PRX 9003	AC, 3-Pin Rt Angle C onnector/C able	PA4

Specifications

Contacts...Gold PlatedCable Length/W ire Size............... $5 \mathrm{M} / 25 \mathrm{AW}$ GVoltage Rating.............................. $250 \mathrm{VAC} / \mathrm{C}$Isolation Resistance......................... $1000 \mathrm{M} \Omega$Operating Temp...................... $40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$

Fig. PA1

Fig. PA2

DC

Fig. PA3

Fig. PA4

AC

Mounting Brackets

ECG Type	Description	Fig. No.
PRX 9108	8 mm Bracket, Series 800 Switches	PA5
PRX 9112	12mm Bracket, Series 1200 Switches	PA5
PRX 9118	18mm Bracket, Series 1800 Switches	PA5
PRX 9130	30 mm Bracket, Series 3000 Switches	PA5

ECG Type	Description	Fig. No.
PRX 9212	12mm Adapter, Series 1200 Switches	PA6
PRX 9218	18 mm Adapter, Series 1800 Switches	PA6

Microswitch Adapters

ECG Type	A In	B In	C In	\mathbf{D} $\mathbf{I n}$	E $\mathbf{I n}$	F $\mathbf{I n}$	\mathbf{G} $\mathbf{I n}$	\mathbf{H} $\mathbf{I n}$
PRX9108	.315	.178	.315	1.07	.670	.473	.630	.178
	(8)	(4.5)	(8)	(27)	(17)	(12)	(16)	(4.5)
PRX9112	.473	.178	.315	1.26	.867	.473	.788	.178
	(12)	(4.5)	(8)	(32)	(22)	(12)	(20)	(4.5)
PRX9118	.709	.178	.315	1.42	1.03	.473	1.03	.178
	(18)	(4.5)	(8)	(36)	(26)	(12)	(26)	(4.5)
PRX9130	1.19	.217	.394	2.17	1.66	.709	1.50	.217
	(30)	(5.5)	(10)	(55)	(42)	(18)	(38)	(5.5)

Fig. PA5

PRX9900 Proximity Switch Tester

- Tests All Types
\checkmark Inductive
\checkmark Capacitive
\checkmark Photoelectric
\checkmark AC - 2 and 3 Wire
- Normally Open
- Normally Closed \checkmark DC - 2, 3 and 4 W ire
- NPN
- PNP
- Normally Open
- Normally Closed
- Complimentary
- NAMUR

Specifications

General
LED Indicators: Hi -bright red LEDS
Terminals: Spring loaded, quick connect
Power: 9 V alkaline or carbon-zinc battery (N ED A 1604)
Battery Life: 15 hours typical with carbon-zinc cells, 30 hours typical with alkaline cells
Protection Rating: N EMA 1, IP 21 (G eneral Purpose)
Dimensions: $120 \mathrm{~mm} \times 65 \mathrm{~mm} \times 40 \mathrm{~mm}$ (4.75" $\left.\times 2.56^{\prime \prime} \times 1.56^{\prime \prime}\right)$

Tests Switch Types

AC Switches: 2 or 3 wire, N ormally 0 pen or Closed
DC Switches: 2, 3 or 4 wire, N ormally 0 pen or Closed, N PN, PN P, N AMUR

- No Need To Remove Switch To Test
- Go/No Go LED Indicators
- Quick Connect Terminals
- Battery Operated

